Skip to main content

Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13185))

Abstract

Recommendation algorithms are susceptible to popularity bias: a tendency to recommend popular items even when they fail to meet user needs. A related issue is that the recommendation quality can vary by demographic groups. Marginalized groups or groups that are under-represented in the training data may receive less relevant recommendations from these algorithms compared to others. In a recent study, Ekstrand et al. [15] investigate how recommender performance varies according to popularity and demographics, and find statistically significant differences in recommendation utility between binary genders on two datasets, and significant effects based on age on one dataset. Here we reproduce those results and extend them with additional analyses. We find statistically significant differences in recommender performance by both age and gender. We observe that recommendation utility steadily degrades for older users, and is lower for women than men. We also find that the utility is higher for users from countries with more representation in the dataset. In addition, we find that total usage and the popularity of consumed content are strong predictors of recommender performance and also vary significantly across demographic groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.

  2. 2.

    http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html.

  3. 3.

    We treat gender as a binary class due to the available attributes in the dataset. We do not intend to suggest that gender identities are binary.

  4. 4.

    https://grouplens.org/datasets/movielens/1m/.

  5. 5.

    https://github.com/benfred/implicit.

  6. 6.

    https://github.com/benfred/bens-blog-code/blob/master/distance-metrics/musicdata.py#L39.

References

  1. Abdollahpouri, H., Burke, R.: Multi-stakeholder recommendation and its connection to multi-sided fairness. arXiv preprint arXiv:1907.13158 (2019)

  2. Abdollahpouri, H., Mansoury, M.: Multi-sided exposure bias in recommendation. arXiv preprint arXiv:2006.15772 (2020)

  3. Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The connection between popularity bias, calibration, and fairness in recommendation. In: Proceedings of the RecSys, pp. 726–731 (2020)

    Google Scholar 

  4. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User Adap. Inter. 12(4), 331–370 (2002)

    Article  Google Scholar 

  5. Burke, R.: Multisided fairness for recommendation. CoRR abs/1707.00093 (2017)

    Google Scholar 

  6. Celma, Ó.: Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13287-2

    Book  Google Scholar 

  7. Celma Herrada, Ò., et al.: Music recommendation and discovery in the long tail. Universitat Pompeu Fabra (2009)

    Google Scholar 

  8. Chaney, A.J.B., Stewart, B.M., Engelhardt, B.E.: How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. In: Proceedings of the RecSys, pp. 224–232, RecSys 2018. Association for Computing Machinery, New York (2018)

    Google Scholar 

  9. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. arXiv preprint arXiv:2010.03240 (2020)

  10. Collins, A., Tkaczyk, D., Aizawa, A., Beel, J.: A study of position bias in digital library recommender systems. arXiv preprint arXiv:1802.06565 (2018)

  11. Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad privacy settings. Proc. Priv. Enh. Technol. 2015(1), 92–112 (2015)

    Google Scholar 

  12. Diaz, F., Mitra, B., Ekstrand, M.D., Biega, A.J., Carterette, B.: Evaluating stochastic rankings with expected exposure. In: Proceedings of the CIKM, pp. 275–284 (2020)

    Google Scholar 

  13. Ekstrand, M.D., Das, A., Burke, R., Diaz, F.: Fairness and discrimination in information access systems. arXiv preprint arXiv:2105.05779 (2021)

  14. Ekstrand, M.D., Kluver, D.: Exploring author gender in book rating and recommendation. User Model. User Adap. Inter. 31, 1–44 (2021)

    Article  Google Scholar 

  15. Ekstrand, M.D., et al.: All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation and effectiveness. In: Conference on Fairness, Accountability and Transparency, pp. 172–186 (2018)

    Google Scholar 

  16. Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep representations. In: Proceedings of the RecSys, pp. 586–590 (2019)

    Google Scholar 

  17. Ghazanfar, M., Prugel-Bennett, A.: Fulfilling the needs of gray-sheep users in recommender systems, a clustering solution (2011)

    Google Scholar 

  18. Gras, B., Brun, A., Boyer, A.: When users with preferences different from others get inaccurate recommendations. In: Monfort, V., Krempels, K.-H., Majchrzak, T.A., Turk, Ž (eds.) WEBIST 2015. LNBIP, vol. 246, pp. 191–210. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30996-5_10

    Chapter  Google Scholar 

  19. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016)

    Google Scholar 

  20. Hashimoto, T., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demographics in repeated loss minimization. In: Proceedings of the ICML, pp. 1929–1938. PMLR (2018)

    Google Scholar 

  21. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. 102(46), 16569–16572 (2005)

    Article  Google Scholar 

  22. Hofmann, K., Mitra, B., Radlinski, F., Shokouhi, M.: An eye-tracking study of user interactions with query auto completion. In: Proceedings of the CIKM, pp. 549–558. ACM (2014)

    Google Scholar 

  23. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)

    Google Scholar 

  24. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., Gay, G.: Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search. ACM TOIS 25(2), 7-es (2007)

    Google Scholar 

  25. Karimi, F., Génois, M., Wagner, C., Singer, P., Strohmaier, M.: Homophily influences ranking of minorities in social networks. Sci. Rep. 8(1), 1–12 (2018)

    Article  Google Scholar 

  26. Krishnan, S., Patel, J., Franklin, M.J., Goldberg, K.: A methodology for learning, analyzing, and mitigating social influence bias in recommender systems. In: Proceedings of the RecSys, pp. 137–144 (2014)

    Google Scholar 

  27. Lambrecht, A., Tucker, C.: Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of stem career ads. Manage. Sci. 65(7), 2966–2981 (2019)

    Article  Google Scholar 

  28. Liu, D., Cheng, P., Dong, Z., He, X., Pan, W., Ming, Z.: A general knowledge distillation framework for counterfactual recommendation via uniform data. In: Proceedings of the SIGIR, pp. 831–840 (2020)

    Google Scholar 

  29. Liu, W., Guo, J., Sonboli, N., Burke, R., Zhang, S.: Personalized fairness-aware re-ranking for microlending. In: Proceedings of the RecSys, pp. 467–471 (2019)

    Google Scholar 

  30. Liu, Y., Cao, X., Yu, Y.: Are you influenced by others when rating? Improve rating prediction by conformity modeling. In: Proceedings of the RecSys, pp. 269–272 (2016)

    Google Scholar 

  31. Marlin, B.M., Zemel, R.S., Roweis, S., Slaney, M.: Collaborative filtering and the missing at random assumption. In: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pp. 267–275 (2007)

    Google Scholar 

  32. Mehrotra, R., Anderson, A., Diaz, F., Sharma, A., Wallach, H., Yilmaz, E.: Auditing search engines for differential satisfaction across demographics. In: Proceedings of the WWW, pp. 626–633 (2017)

    Google Scholar 

  33. Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In: Proceedings of the CIKM, pp. 2243–2251 (2018)

    Google Scholar 

  34. Nori, H., Jenkins, S., Koch, P., Caruana, R.: InterpretML: a unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019)

  35. Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: FairRec: two-sided fairness for personalized recommendations in two-sided platforms. In: Proceedings of the Web Conference, pp. 1194–1204 (2020)

    Google Scholar 

  36. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    Chapter  MATH  Google Scholar 

  37. Rosen, S.: The economics of superstars. Am. Econ. Rev. 71(5), 845–858 (1981)

    Google Scholar 

  38. Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the SIGKDD, pp. 2219–2228 (2018)

    Google Scholar 

  39. Stinson, C.: Algorithms are not neutral: bias in collaborative filtering. arXiv preprint arXiv:2105.01031 (2021)

  40. Stoica, A.A., Riederer, C., Chaintreau, A.: Algorithmic glass ceiling in social networks: the effects of social recommendations on network diversity. In: Proceedings of the WWW, pp. 923–932 (2018)

    Google Scholar 

  41. Sühr, T., Biega, A.J., Zehlike, M., Gummadi, K.P., Chakraborty, A.: Two-sided fairness for repeated matchings in two-sided markets: a case study of a ride-hailing platform. In: Proceedings of the SIGKDD, pp. 3082–3092 (2019)

    Google Scholar 

  42. Wang, G., Zhang, Y., Fang, Z., Wang, S., Zhang, F., Zhang, D.: FairCharge: a data-driven fairness-aware charging recommendation system for large-scale electric taxi fleets. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1), 1–25 (2020)

    Article  Google Scholar 

  43. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Men also like shopping: reducing gender bias amplification using corpus-level constraints. arXiv preprint arXiv:1707.09457 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Neophytou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neophytou, N., Mitra, B., Stinson, C. (2022). Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13185. Springer, Cham. https://doi.org/10.1007/978-3-030-99736-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99736-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99735-9

  • Online ISBN: 978-3-030-99736-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics