Skip to main content

Advertisement

Log in

The ups and downs of hydropeaking: a Canadian perspective on the need for, and ecological costs of, peaking hydropower production

  • PERSPECTIVES ON SUSTAINABLE HYDRO-POWER
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hydropeaking refers to the mode of hydropower dam operation where sub-daily changes in flow are used to vary the generation of electricity in accordance with demand. A typical pattern produces maximum power during the day (i.e., the peak), and minimal power at night. Hydropeaking is considered necessary to stabilize the energy grid since it is the only reliably flexible method of producing electricity besides fossil fuels. With the planned phase-out of traditional coal-fired electricity production across Canada by 2030, and the increased reliance on intermittent wind and solar generation, the flexibility of hydropeaking will assume an increased importance. However, hydropower generation comes with costs; hydropeaking in particular is considered one of the most ecologically harmful modes of operation since downstream biota are subjected to flows that deviate greatly from typical natural flow regime patterns. The ecological effects of hydropeaking have been examined in a growing body of literature, but mitigation options do exist that include dam operational and/or structural modifications. This paper will explore the importance of hydropeaking in the Canadian electricity system, the ecological consequences of flexible hydropower, and mitigation options that could potentially strike a balance between meeting Canadian energy needs and minimizing ecosystem impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.

    Google Scholar 

  • Alonso, C., A. Román, M. D. Bejarano, D. Garcia de Jalon & M. Carolli, 2017. A graphical approach to characterize sub-daily flow regimes and evaluate its alterations due to hydropeaking. Science of the Total Environment 574: 532–543.

    CAS  Google Scholar 

  • Anindito, Y., J. Haas, M. Olivares, W. Nowak & J. Kern, 2019. A new solution to mitigate hydropeaking? Batteries versus re-regulation reservoirs. Journal of Cleaner Production 210: 477–489.

    Google Scholar 

  • Bakken, T. H., T. King & K. Alfredsen, 2016. Simulation of river water temperatures during various hydro-peaking regimes. Journal of Applied Water Engineering and Research 4: 31–43.

    Google Scholar 

  • Bejarano, M. D., Á. Sordo-Ward, C. Alonso & C. Nilsson, 2017. Characterizing effects of hydropower plants on sub-daily flow regimes. Journal of Hydrology 550: 186–200.

    Google Scholar 

  • Bejarano, M. D., R. Jansson & C. Nilsson, 2018. The effects of hydropeaking on riverine plants: a review. Biological Reviews 93: 658–673.

    PubMed  Google Scholar 

  • Bejarano, M. D., Á. Sordo-Ward, C. Alonso, R. Jansson & C. Nilsson, 2020. Hydropeaking affects germination and establishment of riverbank vegetation. Ecological Applications 30(4): 1–16.

    Google Scholar 

  • Bell, E., S. Kramer, D. Zajanc & J. Aspittle, 2008. Salmonid fry stranding mortality associated with daily water level fluctuations in Trail Bridge Reservoir, Oregon. North American Journal of Fisheries Management 28: 1515–1528.

    Google Scholar 

  • Benenati, P. L., J. P. Shannon & D. W. Blinn, 1998. Desiccation and recolonization of phytobenthos in a regulated desert river: Colorado River at Lees Ferry, Arizona, USA. Regulated Rivers: Research and Management 14: 519–532.

    Google Scholar 

  • Bergey, E. A., P. Bunlue, S. Silalom, D. Thapanya & P. Chantaramongkol, 2010. Environmental and biological factors affect desiccation tolerance of algae from two rivers (Thailand and New Zealand) with fluctuating flow. Journal of the North American Benthological Society 29: 725–736.

    Google Scholar 

  • Bevelhimer, M. S., R. A. McManamay & B. O’Connor, 2015. Characterizing sub-daily flow regimes: implications of hydrologic resolution on ecohydrology studies. River Research and Applications 31: 867–879.

    Google Scholar 

  • Bieri, M., M. Müller, S. Schweizer & A. J. Schleiss, 2014. Flow restoration in Alpine streams affected by hydropower operations – a case study for a compensation basin. In Swiss Competences in River Engineering and Restoration: 7th International Conference on Fluvial Hydraulics, 2014. Taylor and Francis Books Ltd., Boca Raton: 181–190.

  • Blinn, W., J. P. Shannon, L. E. Stevens & J. P. Carder, 1995. Consequences of fluctuating discharge for lotic communities. Journal of the North American Benthological Society 14: 233–248.

    Google Scholar 

  • Blinn, D. W., J. P. Shannon, P. L. Benenati & K. P. Wilson, 1998. Algal ecology in tailwater stream communities: the Colorado River below Glen Canyon Dam, Arizona. Journal of Phycology 34: 734–740.

    Google Scholar 

  • Boavida, I., A. Harby, K. D. Clarke & J. Heggenes, 2017. Move or stay: habitat use and movements by Atlantic salmon parr (Salmo salar) during induced rapid flow variations. Hydrobiologia 785: 261–275.

    Google Scholar 

  • Bond, M. J. & N. E. Jones, 2015. Spatial distribution of fishes in hydropeaking tributaries of Lake Superior. River Research and Applications 31: 120–133.

    Google Scholar 

  • Bond, M. J., N. E. Jones & T. J. Haxton, 2016. Growth and life history patterns of a small-bodied stream fish, Cottus cognatus, in hydropeaking and natural rivers of northern Ontario. River Research and Applications 32: 721–733.

    Google Scholar 

  • Bondar-Kunze, E., S. Maier, D. Schönauer, N. Bahl & T. Hein, 2016. Antagonistic and synergistic effects on a stream periphyton community under the influence of pulsed flow velocity increase and nutrient enrichment. Science of the Total Environment 573: 594–602.

    CAS  Google Scholar 

  • Bowes, R. E., J. H. Thorp & M. D. Delong, 2020. Reweaving river food webs through time. Freshwater Biology 65: 390–402.

    CAS  Google Scholar 

  • Bradford, M. J. & J. S. Heinonen, 2008. Low flows, instream flow needs and fish ecology in small streams. Canadian Water Resources Journal 33: 165–180.

    Google Scholar 

  • Brandt, S. A., 2000. Classification of geomorphological effects downstream of dams. Catena 40: 375–401.

    Google Scholar 

  • Bruder, A., D. Tonolla, S. P. Schweizer, S. Vollenweider, S. D. Langhans, A. Wuest, A. Wüest, A. Wuest & A. Wüest, 2016. A conceptual framework for hydropeaking mitigation. Science of the Total Environment 568: 1204–1212.

    CAS  Google Scholar 

  • Bruno, M. C., B. Maiolini, M. Carolli & L. Silveri, 2010. Short time-scale impacts of hydropeaking on benthic invertebrates in an Alpine stream (Trentino, Italy). Limnologica 40: 281–290.

    Google Scholar 

  • Bruno, M. C., A. Siviglia, M. Carolli & B. Maiolini, 2013. Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrology 6: 511–522.

    Google Scholar 

  • Bruno, M. C., M. J. Cashman, B. Maiolini, S. Biffi & G. Zolezzi, 2016. Responses of benthic invertebrates to repeated hydropeaking in semi-natural flume simulations. Ecohydrology 9: 68–82.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    PubMed  Google Scholar 

  • Canada, 2020. Coal Phase-Out: The Powering Past Coal Alliance. Government of Canada, Ottawa [available on internet at https://www.canada.ca/en/services/environment/weather/climatechange/canada-international-action/coal-phaseout.html].

  • Canadian Energy Storage Activity Database, 2020. Mechanical [available on internet at http://energystorageactivity.ca/storage-technology/mechanical].

  • Capra, H., L. Plichard, J. Bergé, H. Pella, M. Ovidio, E. McNeil & N. Lamouroux, 2017. Fish habitat selection in a large hydropeaking river: strong individual and temporal variations revealed by telemetry. Science of the Total Environment 578: 109–120.

    CAS  Google Scholar 

  • Carolli, M., M. C. Bruno, B. Maiolini & L. Silveri, 2010. Assessment of hydropeaking-induced alterations of benthic communities in experimental flumes. Biologia Ambientale 24: 215–223.

    Google Scholar 

  • Carolli, M., M. C. Bruno, A. Siviglia & B. Maiolini, 2012. Responses of benthic invertebrates to abrupt changes of temperature in flume simulations. River Research and Applications 28: 678–691.

    Google Scholar 

  • Carpentier, D., J. Haas, M. Olivares & A. de la Fuente, 2017. Modeling the multi-seasonal link between the hydrodynamics of a reservoir and its hydropower plant operation. Water 9: 1–18.

    Google Scholar 

  • Casas-Mulet, R., K. Alfredsen, B. Hamududu & N. Timalsina, 2015a. The effects of hydropeaking on hyporheic interactions based on field experiments. Hydrological Processes 29: 1370–1384.

    Google Scholar 

  • Casas-Mulet, R., K. Alfredsen & S. J. Saltveit, 2015b. The survival of Atlantic salmon (Salmo salar) eggs during dewatering in a river subjected to hydropeaking. River Research and Applications 31: 433–446.

    Google Scholar 

  • Casas-Mulet, R., S. J. Saltveit & K. T. Alfredsen, 2016. Hydrological and thermal effects of hydropeaking on early life stages of salmonids: a modelling approach for implementing mitigation strategies. Science of the Total Environment 573: 1660–1672.

    CAS  Google Scholar 

  • Cashman, M. J., G. L. Harvey, G. Wharton & M. C. Bruno, 2017. Wood mitigates the effect of hydropeaking scour on periphyton biomass and nutritional quality in semi-natural flume simulations. Aquatic Sciences 79: 459–471.

    CAS  Google Scholar 

  • CCEA (Canadian Council on Ecological Areas), 2014. Ecozones Introduction [available on internet at https://ccea-ccae.org/ecozones-introduction/]. Accessed Nov 2020.

  • CEDREN (Center for Environmental Design of Renewable Energy), 2020. Effects of rapid and Frequent Flow Changes-EnviPEAK [available on internet at https://www.cedren.no/english/Projects/EnviPEAK]. Accessed Nov 2020.

  • Céréghino, R. & P. Lavandier, 1997. Influence des eclusees hydroelectriques sur la distribution et le developpement larvaire des Dipteres Simuliidae d’une riviere de moyenne montagne. Comptes Rendus de l’Academie des Sciences 320: 329–338.

    Google Scholar 

  • Céréghino, R. & P. Lavandier, 1998. Influence of hypolimnetic hydropeaking on the distribution and population dynamics of Ephemeroptera in a mountain stream. Freshwater Biology 40: 385–399.

    Google Scholar 

  • Charmasson, J., & P. Zinke, 2011. Mitigation Measures Against Hydropeaking Effects. Technical Report. SINTEF Energy Research.

  • Clark, M. E., K. A. Rose, J. A. Chandler, T. J. Richter, D. J. Orth & W. Van Winkle, 2008. Water-level fluctuation effects on centrarchid reproductive success in reservoirs: a modeling analysis. North American Journal of Fisheries Management 28: 1138–1156.

    Google Scholar 

  • Clarke, K. D., T. C. Pratt, R. G. Randall, D. A. Scruton & K. E. Smokorowski, 2008. Validation of the Flow Management Pathway: Effects of Altered Flow on Fish Habitat and Fishes Downstream from a Hydropower Dam. Canadian Technical Report of Fisheries and Aquatic Sciences 2784: vi+111.

  • Costa, M. J., R. J. Lennox, C. Katopodis & S. J. Cooke, 2017. Is there evidence for flow variability as an organism-level stressor in fluvial fish? Journal of Ecohydraulics 2: 68–83.

    Google Scholar 

  • Cross, W. F., C. V. Baxter, K. C. Donner, E. J. Rosi-marshall, T. A. Kennedy, R. O. Hall Jr., H. A. W. Kelly & R. S. Rogers, 2011. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecological Applications 21: 2016–2033.

    PubMed  Google Scholar 

  • Cushman, R. M., 1985. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. North American Journal of Fisheries Management 5: 330–339.

    Google Scholar 

  • de Boer, D. H., M. A. Hassan, B. MacVicar & M. Stone, 2005. Recent (1999–2003) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics. Hydrological Processes 19: 265–283.

    Google Scholar 

  • DFO (Fisheries and Oceans Canada), 2019. Assessment of the Instream Flow Needs for fish and Fish Habitat in the Saskatchewan River Downstream of the E.B. Campbell Hydroelectric Station. DFO Canadian Science Advisory Secretariat Science Advisory Report. 2018/048.

  • Doi, H., K. H. Chang, T. Ando, H. Imai, S. I. Nakano, A. Kajimoto & I. Katano, 2008. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia 156: 363–371.

    PubMed  Google Scholar 

  • Doretto, A., E. Piano & C. E. Larson, 2020. The River Continuum Concept: lessons from the past and perspectives for the future. Canadian Journal of Fisheries and Aquatic Sciences 12: 1–12.

    Google Scholar 

  • Ellis, L. E. & N. E. Jones, 2013. Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environmental Reviews 21: 136–148.

    Google Scholar 

  • Emmer, S., J. Nafziger, V. McFarlane, M. Loewen & F. Hicks, 2013. Winter ice processes of the Kananaskis River, Alberta. In Proceedings of the 17th Workshop on River Ice: 21–23.

  • Enders, E. C., D. A. Watkinson, H. Ghamry, K. H. Mills & W. G. Franzin, 2017. Fish age and size distributions and species composition in a large, hydropeaking Prairie River. River Research and Applications 33: 1246–1256.

    Google Scholar 

  • Feng, M., G. Zolezzi & M. Pusch, 2018. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Science of the Total Environment 612: 1266–1275.

    CAS  Google Scholar 

  • Finch, C., W. E. Pine & K. E. Limburg, 2015. Do hydropeaking flows alter juvenile fish growth rates? A test with juvenile humpback chub in the Colorado River. River Research and Applications 31: 156–164.

    Google Scholar 

  • Fisher, S. G. & A. Lavoy, 1972. Differences in littoral fauna due to fluctuating water levels below a hydroelectric dam. Journal of the Fisheries Research Board of Canada 29: 1472–1476.

    Google Scholar 

  • Flodmark, L. E. W., H. A. Urke, J. H. Halleraker, J. V. Arnekleiv, L. A. Vøllestad & A. B. S. Poléo, 2002. Cortisol and glucose responses in juvenile brown trout subjected to a fluctuating flow regime in an artificial stream. Journal of Fish Biology 60: 238–248.

    CAS  Google Scholar 

  • Flodmark, L. E. W., L. A. Vøllestad & T. Forseth, 2004. Performance of juvenile brown trout exposed to fluctuating water level and temperature. Journal of Fish Biology 65: 460–470.

    Google Scholar 

  • Gillespie, B. R., S. Desmet, P. Kay, M. R. Tillotson & L. E. Brown, 2015. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshwater Biology 60: 410–425.

    Google Scholar 

  • Gore, J. A., S. Niemela, V. H. Resh & B. Statzner, 1994. Near-substrate hydraulic conditions under artificial floods from peaking hydropower operation: a preliminary analysis of disturbance intensity and duration. Regulated Rivers: Research and Management 9: 15–34.

    Google Scholar 

  • Gostner, W., C. Lucarelli, D. Theiner, A. Kager, G. Premstaller & A. J. Schleiss, 2011. A holistic approach to reduce negative impacts of hydropeaking. In Dams and Reservoirs under Changing Challenges – Proceedings of the International Symposium on Dams and Reservoirs Under Changing Challenges – 79 Annual Meeting of ICOLD, Swiss Committee on Dams: 857–865.

  • Greimel, F., L. Schülting, G. Wolfram, E. Bondar-Kunze, S. Auer, B. Zeiringer & C. Hauer, 2018. Hydropeaking impacts and mitigation. In Schmutz, S. & J. Sendzimir (eds), Riverine Ecosystem Management. Springer, Berlin: 91–110.

    Google Scholar 

  • Haas, J., D. Hagen & W. Nowak, 2019. Energy storage and transmission systems to save the fish? Minimizing hydropeaking for little extra cost. Sustainable Energy Technologies and Assessments 35: 41–47.

    Google Scholar 

  • Harvey-Lavoie, S., S. J. Cooke, G. Guénard & D. Boisclair, 2016. Differences in movements of northern pike inhabiting rivers with contrasting flow regimes. Ecohydrology 9: 1687–1699.

    Google Scholar 

  • Hauer, C., A. Siviglia & G. Zolezzi, 2017. Hydropeaking in regulated rivers – from process understanding to design of mitigation measures. Science of the Total Environment 579: 22–26.

    CAS  Google Scholar 

  • Hauer, C., P. Holzapfel, D. Tonolla, H. Habersack & G. Zolezzi, 2019. In situ measurements of fine sediment infiltration (FSI) in gravel-bed rivers with a hydropeaking flow regime. Earth Surface Processes and Landforms 44: 433–448.

    Google Scholar 

  • Haxton, T. J. & C. S. Findlay, 2008. Meta-analysis of the impacts of water management on aquatic communities. Canadian Journal of Fisheries and Aquatic Sciences 65: 437–447.

    Google Scholar 

  • Heggenes, J., K. Alfredsen, A. A. Bustos, A. Huusko & M. Stickler, 2018. Be cool: a review of hydro-physical changes and fish responses in winter in hydropower-regulated northern streams. Environmental Biology of Fishes 101: 1–21.

    Google Scholar 

  • Holzapfel, P., P. Leitner, H. Habersack, W. Graf & C. Hauer, 2017. Evaluation of hydropeaking impacts on the food web in alpine streams based on modelling of fish- and macroinvertebrate habitats. Science of the Total Environment 575: 1489–1502.

    CAS  Google Scholar 

  • Hunter, M. A., 1992. Hydropower Flow Fluctuations and Salmonids: A Review of the Biological Effetcs, Mechanical Causes, and Options for Mitigation. State of Washington Department of Fisheries Technical Report 119: 1–46.

  • Hurst, T. P., 2007. Causes and consequences of winter mortality in fishes. Journal of Fish Biology 71: 315–345.

    Google Scholar 

  • Hydro-Québec, 2020 [available on internet at http://www.hydroquebec.com/learning/hydroelectricite/gestion-eau.html]. Accessed Nov 2020.

  • Ibarra, G., A. de La Fuente & M. Contreras, 2015. Effects of hydropeaking on the hydrodynamics of a stratified reservoir: the Rapel Reservoir case study. Journal of Hydraulic Research 53: 760–772.

    Google Scholar 

  • Ibrahim, H., A. Ilinca & J. Perron, 2008. Energy storage systems – characteristics and comparisons. Renewable and Sustainable Energy Reviews 12: 1221–1250.

    CAS  Google Scholar 

  • IHA (International Hydropower Association), 2019. Canada. International Hydropower Association, London [available on internet at https://www.hydropower.org/country-profiles/canada]. Accessed Nov 2020.

  • IHA (International Hydropower Association), 2020. Hydropower Status Report. International Hydropower Association, London [available on internet at https://www.hydropower.org/publications/2020-hydropower-status-report]. Accessed Nov 2020.

  • IHA (International Hydropower Association), 2020. Types of Hydropower. International Hydropower Association, London [available on internet at https://www.hydropower.org/types-of-hydropower]. Accessed Nov 2020.

  • Irvine, R. L., T. Oussoren, J. S. Baxter & D. C. Schmidt, 2009. The effects of flow reduction rates on fish stranding in British Columbia, Canada. River Research and Applications 25: 405–415.

    Google Scholar 

  • Irvine, R. L., J. L. Thorley, R. Wescott, D. Schmidt & D. Derosa, 2015. Why do fish strand? An analysis of ten years of flow reduction monitoring data from the Columbia and Kootenay Rivers, Canada. River Research and Applications 31: 1242–1250.

    Google Scholar 

  • Jones, N. E., 2013. Spatial patterns of benthic invertebrates in regulated and natural rivers. River Research and Applications 29: 343–351.

    Google Scholar 

  • Jones, N. E., 2014. The dual nature of hydropeaking rivers: is ecopeaking possible? River Research and Applications 30: 521–526.

    Google Scholar 

  • Jones, N. E. & I. C. Petreman, 2015. Environmental influences on fish migration in a hydropeaking river. River Research and Applications 31: 1109–1118.

    Google Scholar 

  • Judes, C., V. Gouraud, H. Capra, A. Maire, A. Barillier & N. Lamouroux, 2020. Consistent but secondary influence of hydropeaking on stream fish assemblages in space and time. Journal of Ecohydraulics. https://doi.org/10.1080/24705357.2020.1790047.

    Article  Google Scholar 

  • Junk, W. J. & K. M. Wantzen, 2004. The flood pulse concept: new aspects, approaches and applications – an update. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries II: 117–149.

  • Kelly, B., K. E. E. Smokorowski & M. Power, 2016. Slimy Sculpin (Cottus cognatus) annual growth in contrasting regulated and unregulated riverine environments. Hydrobiologia 768: 239–253.

    Google Scholar 

  • Kelly, B., K. E. E. Smokorowski & M. Power, 2017a. Growth, condition and survival of three forage fish species exposed to two different experimental hydropeaking regimes in a regulated river. River Research and Applications 33: 50–62.

    Google Scholar 

  • Kelly, B., K. E. Smokorowski & M. Power, 2017b. Impact of river regulation and hydropeaking on the growth, condition and field metabolism of Brook Trout (Salvelinus fontinalis). Ecology of Freshwater Fish 26: 666–675.

    Google Scholar 

  • Kelly, B., K. E. K. E. Smokorowski & M. Power, 2017c. Downstream effects of hydroelectric dam operation on thermal habitat use by Brook Trout (Salvelinus fontinalis) and Slimy Sculpin (Cottus cognatus). Ecology of Freshwater Fish 26: 552–562.

    Google Scholar 

  • Kennedy, T. A., J. D. Muehlbauer, C. B. Yackulic, D. A. Lytle, S. W. Miller, K. L. Dibble, E. W. Kortenhoeven, A. N. Metcalfe & C. V. Baxter, 2016. Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66: 561–575.

    Google Scholar 

  • Kibler, K. M. & D. D. Tullos, 2013. Cumulative biophysical impact of small and large hydropower development in Nu River, China. Water Resources Research 49: 3104–3118.

    Google Scholar 

  • Kjærstad, G., J. V. Arnekleiv, J. D. M. Speed & A. K. Herland, 2018. Effects of hydropeaking on benthic invertebrate community composition in two central Norwegian rivers. River Research and Applications 34: 218–231.

    Google Scholar 

  • Korman, J. & S. E. Campana, 2009. Effects of hydropeaking on nearshore habitat use and growth of age-0 rainbow trout in a large regulated river. Transactions of the American Fisheries Society 138: 76–87.

    Google Scholar 

  • Ligon, F. K., W. E. Dietrich & W. J. Trush, 1995. Downstream ecological effects of dams – a geomorphic perspective. BioScience 45: 183–192.

    Google Scholar 

  • Maheu, A., A. St-Hilaire, D. Caissie, N. El-Jabi, G. Bourque & D. Boisclair, 2016. A regional analysis of the impact of dams on water temperature in medium-size rivers in eastern Canada. Canadian Journal of Fisheries and Aquatic Sciences 73: 1–13.

    Google Scholar 

  • Marty, J., K. Smokorowski & M. Power, 2009. The influence of fluctuating ramping rates on the food web of boreal rivers. River Research and Applications 25: 962–974.

    Google Scholar 

  • McManamay, R. A., C. O. Oigbokie, S.-C. Kao & M. S. Bevelhimer, 2016. Classification of US hydropower dams by their modes of operation. River Research and Applications 32: 1450–1468.

    Google Scholar 

  • Melcher, A. H., T. H. Bakken, T. Friedrich, F. Greimel, N. Humer, S. Schmutz, B. Zeiringer & J. A. Webb, 2017. Drawing together multiple lines of evidence from assessment studies of hydropeaking pressures in impacted rivers. Freshwater Science 36: 220–230.

    Google Scholar 

  • Mihalicz, J. E., T. D. Jardine, H. M. Baulch & I. D. Phillips, 2019. Seasonal effects of a hydropeaking dam on a downstream benthic macroinvertebrate community. River Research and Applications 35: 714–724.

    Google Scholar 

  • Miller, S. W. & S. Judson, 2014. Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking. Canadian Journal of Fisheries and Aquatic Sciences 71: 675–687.

    Google Scholar 

  • Moreira, M., D. S. Hayes, I. Boavida, M. Schletterer, S. Schmutz & A. Pinheiro, 2019. Ecologically-based criteria for hydropeaking mitigation: a review. Science of the Total Environment 657: 1508–1522.

    CAS  Google Scholar 

  • Murchie, K. J. & K. E. Smokorowski, 2004. Relative activity of Brook Trout and Walleyes in response to flow in a regulated river. North American Journal of Fisheries Management 24: 1050–1057.

    Google Scholar 

  • Murchie, K. J., K. P. E. Hair, C. E. Pullen, T. D. Redpath, H. R. Stephens & S. J. Cooke, 2008. Fish response to modified flow regimes in regulated rivers: research methods, effects and opportunities. River Research and Applications 24: 197–217.

    Google Scholar 

  • Nagrodski, A., G. D. Raby, C. T. Hasler, M. K. Taylor & S. J. Cooke, 2012. Fish stranding in freshwater systems: sources, consequences, and mitigation. Journal of Environmental Management 103: 133–141.

    PubMed  Google Scholar 

  • Nilsson, C. & K. Berggren, 2000. Alterations of riparian ecosystems caused by river regulation. BioScience 50: 783–792.

    Google Scholar 

  • Nilsson, C., R. Jansson & U. Zinko, 1997. Long-term responses of river-margin vegetation to water-level regulation. Science 276: 798–800.

    CAS  PubMed  Google Scholar 

  • NRCAN, 2017. Renewable Energy Power Plants, 1 MW or more – North American Cooperation on Energy Information. Natural Resources Canada Government of Canada, Ottawa [available on internet at https://open.canada.ca/data/en/dataset/490db619-ab58-4a2a-a245-2376ce1840de]. Accessed Nov 2020.

  • NRCAN, 2020a. Electricity Facts. Natural Resources Canada, Ottawa [available on internet at https://www.nrcan.gc.ca/science-data/data-analysis/energy-data-analysis/energyfacts/electricity-facts/20068]. Accessed Nov 2020.

  • NRCAN, 2020b. Low Head and Very Low Head Hydro Power Generation. Natural Resources Canada, Ottawa [available on internet at https://www.nrcan.gc.ca/energy/energysources-distribution/renewables/small-hydropower/low-head-and-very-low-head-hydro-power-generation/7365]. Accessed Nov 2020.

  • Olden, J. D. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86–107.

    Google Scholar 

  • Olden, J. D., C. P. Konrad, T. S. Melis, M. J. Kennard, M. C. Freeman, M. C. Mims, E. N. Bray, K. B. Gido, N. P. Hemphill, D. A. Lytle, L. E. McMullen, M. Pyron, C. T. Robinson, J. C. Schmidt & J. G. Williams, 2014. Are largescale flow experiments informing the science and management of freshwater ecosystems? Frontiers in Ecology and the Environment 12: 176–185.

    Google Scholar 

  • Parasiewicz, P., S. Schmutz & O. Moog, 1998. The effect of managed hydropower peaking on the physical habitat, benthos and fish fauna in the River Bregenzerach in Austria. Fisheries Management and Ecology 5: 403–417.

    Google Scholar 

  • Patterson, R. J. & K. E. Smokorowski, 2011. Assessing the benefit of flow constraints on the drifting invertebrate community of a regulated river. River Research and Applications 27: 99–112.

    Google Scholar 

  • Pearce, J. L., K. E. Smokorowski, J. Brush, E. Timusk, J. Marty & M. Power, 2019. Unrestricted ramping rates and long-term trends in the food web metrics of a boreal river. River Research and Applications 35(9): 1–15.

    Google Scholar 

  • Pérez-Díaz, J. I., R. Millán, D. García, I. Guisández & J. R. Wilhelmi, 2012. Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation. Energy 48: 144–152.

    Google Scholar 

  • Perry, S. A. & W. B. Perry, 1986. Effects of experimental flow regulation on invertebrate drift and stranding in the Flathead and Kootenai Rivers, Montana, USA. Hydrobiologia 134: 171–182.

    Google Scholar 

  • Person, E., 2013. Impact of hydropeaking on fish and their habitat. Communications du Laboratoire de Constructions Hydrauliques. École Polytechnique Fédérale De Lausanne, Suisse. Thèse No. 5812: 139 p.

  • Person, E., M. Bieri, A. Peter & A. J. Schleiss, 2014. Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations. Ecohydrology 7: 580–599.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Google Scholar 

  • Poff, N. L. R., 2018. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshwater Biology 63: 1011–1021.

    Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Google Scholar 

  • Power, M. E., W. E. Dietrich & J. C. Finlay, 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management 20: 887–895.

    CAS  PubMed  Google Scholar 

  • Puffer, M., O. K. Berg, A. Huusko, T. Vehanen & S. Einum, 2017. Effects of intra- and interspecific competition and hydropeaking on growth of juvenile Atlantic salmon (Salmo salar). Ecology of Freshwater Fish 26: 99–107.

    Google Scholar 

  • Pulg, U., K. W. Vollset, G. Velle & S. Stranzl, 2016. First observations of saturopeaking: characteristics and implications. Science of the Total Environment 573: 1615–1621.

    CAS  Google Scholar 

  • Rader, R. B. & T. A. Belish, 1999. Influence of mild to severe flow alterations on invertebrates in three mountain streams. Regulated Rivers: Research and Management 15: 353–363.

    Google Scholar 

  • Rehman, S., L. M. Al-Hadhrami & M. M. Alam, 2015. Pumped hydro energy storage: a technological review. Renewable and Sustainable Energy Reviews 44: 586–598.

    Google Scholar 

  • Renöfält, B. M., R. Jansson & C. Nilsson, 2010. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshwater Biology 55: 49–67.

    Google Scholar 

  • Richter, B. D. & G. A. Thomas, 2007. Restoring environmental flows by modifying dam operations. Ecology and Society 12: 12.

    Google Scholar 

  • Richter, B. D., J. V. Baumgartner, J. Powell & D. P. Braun, 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10: 1163–1174.

    Google Scholar 

  • Roach, K. A., 2013. Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshwater Science 32: 283–298.

    Google Scholar 

  • Rocaspana, R., E. Aparicio, A. Palau-Ibars, R. Guillem & C. Alcaraz, 2019. Hydropeaking effects on movement patterns of brown trout (Salmo trutta L.). River Research and Applications 35: 646–655.

    Google Scholar 

  • Rossel, V. & A. de la Fuente, 2015. Assessing the link between environmental flow, hydropeaking operation and water quality of reservoirs. Ecological Engineering 85: 26–38.

    Google Scholar 

  • Rytwinksi, T., M. Harper, J. J. Taylor, J. R. Bennett, L. A. Donaldson, K. E. Smokorowski, K. Clarke, M. J. Bradford, H. Ghamry, J. D. Olden, D. Boisclair & S. J. Cooke, 2020. What are the effects of flow-regime changes on fish productivity in temperate regions? A systematic map. Environmental Evidence 9: 7.

    Google Scholar 

  • Sabater, S., 2008. Alterations of the global water cycle and their effects on river structure, function and services. Freshwater Reviews 1: 75–88.

    Google Scholar 

  • Sabo, J. L., M. Caron, R. Doucett, K. L. Dibble, A. Ruhi, J. C. Marks, B. A. Hungate & T. A. Kennedy, 2018. Pulsed flows, tributary inputs and food-web structure in a highly regulated river. Journal of Applied Ecology 55: 1884–1895.

    Google Scholar 

  • Schmutz, S., T. H. Bakken, T. Friedrich, F. Greimel, A. Harby, M. Jungwirth, A. Melcher, G. Unfer & B. Zeiringer, 2015. Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River Research and Applications 31: 919–930.

    Google Scholar 

  • Schülting, L., C. K. Feld & W. Graf, 2016. Effects of hydro- and thermopeaking on benthic macroinvertebrate drift. Science of the Total Environment 573: 1472–1480.

    Google Scholar 

  • Schülting, L., C. K. Feld, B. Zeiringer, H. Huđek & W. Graf, 2019. Macroinvertebrate drift response to hydropeaking: an experimental approach to assess the effect of varying ramping velocities. Ecohydrology 12: e2032.

    Google Scholar 

  • Scruton, D. A., L. M. N. Ollerhead, K. D. Clarke, C. Pennell, K. Alfredsen, A. Harby & D. Kelley, 2003. The behavioural response of juvenile Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis) to experimental hydropeaking on a Newfoundland (Canada) River. River Research and Applications 19: 577–587.

    Google Scholar 

  • She, Y., F. Hicks & R. Andrishak, 2012. The role of hydro-peaking in freeze-up consolidation events on regulated rivers. Cold Regions Science and Technology 73: 41–49.

    Google Scholar 

  • Smokorowski, K. E., R. A. Metcalfe, S. D. Finucan, N. Jones, J. Marty, M. Power, R. S. Pyrce & R. Steele, 2011. Ecosystem level assessment of environmentally based flow restrictions for maintaining ecosystem integrity: a comparison of a modified peaking versus unaltered river. Ecohydrology 4: 791–806.

    Google Scholar 

  • Smolar-Žvanut, N. & A. K. Klemenčič, 2013. The impact of altered flow regime on periphyton. In Maddock, I., A. Harby, P. Kemp & P. Wood (eds), Ecohydraulics: An Integrated Approach. Wiley, Chichester: 229–243.

    Google Scholar 

  • Statistics Canada, 2017. Human Activity and the Environment 2016: Freshwater in Canada. Government of Canada, Ottawa [available on internet at https://www.150.statcan.gc.ca/n1/pub/16-201-x/16-201-x2017000-eng.htm]. Accessed Nov 2020.

  • Sukhbaatar, C., T. Sodnom & C. Hauer, 2020. Challenges for hydropeaking mitigation in an ice-covered river: a case study of the Eg Hydropower Plant, Mongolia. River Research and Applications 36(8): 1–14.

    Google Scholar 

  • Taylor, M. K. & S. J. Cooke, 2012. Meta-analyses of the effects of river flow on fish movement and activity. Environmental Reviews 20: 211–219.

    Google Scholar 

  • Taylor, M. K., C. T. Hasler, S. G. Hinch, B. Lewis, D. C. Schmidt & S. J. Cooke, 2014a. Reach-scale movements of bull trout (Salvelinus confluentus) relative to hydropeaking operations in the Columbia River, Canada. Ecohydrology 7: 1079–1086.

    Google Scholar 

  • Taylor, M. K., C. T. Hasler, C. S. Findlay, B. Lewis, D. C. Schmidt, S. G. Hinch & S. J. Cooke, 2014b. Hydrologic correlates of bull trout (Salvelinus confluentus) swimming activity in a hydropeaking river. River Research and Applications 30: 756–765.

    Google Scholar 

  • Timalsina, N. P., J. Charmasson & K. T. Alfredsen, 2013. Simulation of the ice regime in a Norwegian regulated river. Cold Regions Science and Technology 94: 61–73.

    Google Scholar 

  • Timusk, E. R., K. E. Smokorowski & N. E. Jones, 2016. An experimental test of sub-hourly changes in macroinvertebrate drift density associated with hydropeaking in a regulated river. Journal of Freshwater Ecology 31: 555–570.

    Google Scholar 

  • Toffolon, M., A. Siviglia & G. Zolezzi, 2010. Thermal wave dynamics in rivers affected by hydropeaking. Water Resources Research 46: W08536.

    Google Scholar 

  • Tonolla, D., A. Bruder & S. Schweizer, 2017. Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems – a case study from the Swiss Alps. Science of the Total Environment 574: 594–604.

    CAS  Google Scholar 

  • Tuor, K. M. F. F., K. E. Smokorowski & S. J. Cooke, 2015. The influence of fluctuating ramping rates on the diets of small-bodied fish species of boreal rivers. Environmental Biology of Fishes 98: 345–355.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Google Scholar 

  • Vanzo, D., G. Zolezzi & A. Siviglia, 2016. Eco-hydraulic modelling of the interactions between hydropeaking and river morphology. Ecohydrology 9: 421–437.

    Google Scholar 

  • Vehanen, T. & M. Lahti, 2003. Movements and habitat use by pikeperch (Stizostedion lucioperca (L.)) in a hydropeaking reservoir. Ecology of Freshwater Fish 12: 203–215.

    Google Scholar 

  • Vehanen, T., J. Jurvelius & M. Lahti, 2005. Habitat utilisation by fish community in a short-term regulated river reservoir. Hydrobiologia 545: 257–270.

    Google Scholar 

  • Vericat, D., R. J. Batalla & C. N. Gibbins, 2008. Sediment entrainment and depletion from patches of fine material in a gravel-bed river. Water Resources Research 44: W11415.

    Google Scholar 

  • Vila-Martínez, N., N. Caiola, C. Ibáñez, L. Benejam & S. Brucet, 2019. Normalized abundance spectra of fish community reflect hydro-peaking on a Mediterranean large river. Ecological Indicators 97: 280–289.

    Google Scholar 

  • Voelz, N. J. & J. V. Ward, 1991. Biotic responses along the recovery gradient of a regulated stream. Canadian Journal of Fisheries and Aquatic Sciences 48: 2477–2490.

    Google Scholar 

  • Vollset, K. W., H. Skoglund, T. Wiers & B. T. Barlaup, 2016. Effects of hydropeaking on the spawning behavior of Atlantic salmon Salmo salar and brown trout Salmo trutta. Journal of Fish Biology 88: 2236–2250.

    CAS  PubMed  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. Serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Science Publishers, Ann Arbor: 29–42.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research and Management 10: 159–168.

    Google Scholar 

  • Webb, J. A., K. A. Miller, E. L. King, S. C. de Little, M. J. Stewardson, J. K. H. Zimmerman & N. L. Poff, 2013. Squeezing the most out of existing literature: a systematic re-analysis of published evidence on ecological responses to altered flows. Freshwater Biology 58: 2439–2451.

    Google Scholar 

  • White, M. S., M. A. Xenopoulos, R. A. Metcalfe & K. M. Somers, 2011. Water level thresholds of benthic macroinvertebrate richness, structure, and function of Boreal lake stony littoral habitats. Canadian Journal of Fisheries and Aquatic Sciences 68: 1695–1704.

    Google Scholar 

  • Young, P. S., J. J. Cech Jr. & L. C. Thompson, 2011. Hydropower-related pulsed-flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs. Reviews in Fish Biology and Fisheries 21: 713–731.

    Google Scholar 

Download references

Acknowledgements

I would like to thank Rick Elsner for conducting some literature searching, summarizing flow data presented in the paper, and generating the schematic diagram, and Angela deGeus for collecting and summarizing the Canada specific provincial legislation information presented in this paper. Thanks to Rick Elsner, Angela deGeus and Evan Timusk for providing reviews and editing. Paul Norris of the Ontario Waterpower Association was valuable in identifying the extent of hydropeaking in Ontario, and for clarifying my understanding of hydro concepts and terminology. Thanks to Alf Leake and Helen Hamilton Harding for providing the BC Hydro specific information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Smokorowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Ingeborg P. Helland, Michael Power, Eduardo G. Martins & Knut Alfredsen / Perspectives on the environmental implications of sustainable hydro-power

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smokorowski, K.E. The ups and downs of hydropeaking: a Canadian perspective on the need for, and ecological costs of, peaking hydropower production. Hydrobiologia 849, 421–441 (2022). https://doi.org/10.1007/s10750-020-04480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04480-y

Keywords

Navigation