Skip to main content
Log in

Effects of High-Intensity Interval Training Protocols on Blood Lactate Levels and Cognition in Healthy Adults: Systematic Review and Meta-Regression

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Some health benefits from high-intensity interval training (HIIT) are facilitated by peripheral blood lactate levels. However, the lactate response from HIIT is variable and dependent on protocol parameters.

Objectives

We aimed to determine the HIIT protocol parameters that elicited peak lactate levels, and how these levels are associated with post-HIIT cognitive performance.

Study Design

We conducted a systematic review with meta-regression.

Methods

MEDLINE, Embase, CENTRAL, SPORTDiscus, and CINAHL + were searched from database inception to 8 April, 2022. Peer-reviewed primary research in healthy adults that determined lactate (mmol/L) and cognitive performance after one HIIT session was included. Mixed-effects meta-regressions determined the protocol parameters that elicited peak lactate levels, and linear regressions modelled the relationship between lactate levels and cognitive performance.

Results

Study entries (n = 226) involving 2560 participants (mean age 24.1 ± 4.7 years) were included in the meta-regression. A low total work-interval volume (~ 5 min), recovery intervals that are about five times longer than work intervals, and a medium session volume (~ 15 min), elicited peak lactate levels, even when controlling for intensity, fitness (peak oxygen consumption) and blood measurement methods. Lactate levels immediately post-HIIT explained 14–17% of variance in Stroop interference condition at 30 min post-HIIT.

Conclusions

A HIIT protocol that uses the above parameters (e.g., 8 × 30-s maximal intensity with 90-s recovery) can elicit peak lactate, a molecule that is known to benefit the central nervous system and be involved in exercise training adaptations. This review reports the state of the science in regard to the lactate response following HIIT, which is relevant to those in the sports medicine field designing HIIT training programs.

Trial Registry

Clinical Trial Registration: PROSPERO (CRD42020204400).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    Article  PubMed  Google Scholar 

  2. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10.

    Article  PubMed  Google Scholar 

  3. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–81.

    Article  PubMed  Google Scholar 

  4. Hwang CL, Yoo JK, Kim HK, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maillard F, Rousset S, Pereira B, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42(6):433–41.

    Article  CAS  PubMed  Google Scholar 

  6. Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab. 2014;39(3):409–12.

    Article  PubMed  Google Scholar 

  7. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54.

    Article  PubMed  Google Scholar 

  8. Beneke R, Leithauser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6(1):8–24.

    Article  PubMed  Google Scholar 

  9. Falz R, Fikenzer S, Holzer R, et al. Acute cardiopulmonary responses to strength training, high-intensity interval training and moderate-intensity continuous training. Eur J Appl Physiol. 2019;119(7):1513–23.

    Article  PubMed  Google Scholar 

  10. Fletcher WM. Lactic acid in amphibian muscle. J Physiol. 1907;35(4):247–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(Pt 1):5–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Proia P, Di Liegro CM, Schiera G, et al. Lactate as a metabolite and a regulator in the central nervous system. Int J Mol Sci. 2016;17(9):1450.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100.

    Article  CAS  PubMed  Google Scholar 

  14. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85.

    Article  CAS  PubMed  Google Scholar 

  15. Bergman BC, Tsvetkova T, Lowes B, et al. Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol. 2009;587(Pt 9):2087–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Emhoff CA, Messonnier LA, Horning MA, et al. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol. (1985). 2013;114(3):297–306.

    Article  CAS  PubMed  Google Scholar 

  17. Glenn TC, Martin NA, Horning MA, et al. Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 2015;32(11):820–32.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22(10):3443–9.

    Article  CAS  PubMed  Google Scholar 

  19. van Hall G, Stromstad M, Rasmussen P, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–9.

    Article  PubMed  Google Scholar 

  20. Morland C, Andersson KA, Haugen OP, et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017;8:15557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muller P, Duderstadt Y, Lessmann V, et al. Lactate and BDNF: key mediators of exercise induced neuroplasticity? J Clin Med. 2020;9(4):1136.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ichihara Y, Doi T, Ryu Y, et al. Oligodendrocyte progenitor cells directly utilize lactate for promoting cell cycling and differentiation. J Cell Physiol. 2017;232(5):986–95.

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Abarca LI, Tabernero A, Medina JM. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia. 2001;36(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  24. Matsui T, Omuro H, Liu YF, et al. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci USA. 2017;114(24):6358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez Z, Castano O, Castells AA, et al. Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials. 2014;35(17):4769–81.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, Liu T, Guo H, et al. Lactate potentiates angiogenesis and neurogenesis in experimental intracerebral hemorrhage. Exp Mol Med. 2018;50(7):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A, et al. L-lactate promotes adult hippocampal neurogenesis. Front Neurosci. 2019;13:403.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto T, Hussien R, Oommen S, et al. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21(10):2602–12.

    Article  CAS  PubMed  Google Scholar 

  29. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  30. Popov LD. Mitochondrial biogenesis: an update. J Cell Mol Med. 2020;24(9):4892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res. 2017;95(10):2025–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nalbandian M, Takeda M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology (Basel). 2016;5(4):38.

    PubMed  PubMed Central  Google Scholar 

  33. Percival ME, Martin BJ, Gillen JB, et al. Sodium bicarbonate ingestion augments the increase in PGC-1alpha mRNA expression during recovery from intense interval exercise in human skeletal muscle. J Appl Physiol. (1985). 2015;119(11):1303–12.

    Article  CAS  PubMed  Google Scholar 

  34. Hoshino D, Tamura T, Masuda H, et al. Effects of decreased lactate accumulation after dichloroacetate administration on exercise training-induced mitochondrial adaptations in mouse skeletal muscle. Physiol Rep. 2015;3(9):e12555.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang J, Ruchti E, Petit JM, et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci USA. 2014;111(33):12228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lezi E, Lu J, Selfridge JE, et al. Lactate administration reproduces specific brain and liver exercise-related changes. J Neurochem. 2013;127(1):91–100.

    Article  PubMed Central  Google Scholar 

  37. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coco M, Caggia S, Musumeci G, et al. Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. J Neurosci Res. 2013;91(2):313–20.

    Article  CAS  PubMed  Google Scholar 

  39. Kujach S, Olek RA, Byun K, et al. Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: the possible involvement of lactate. Front Neurosci. 2020;13:1455.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petersen AA, Larsen KE, Behr GG, et al. Brain-derived neurotrophic factor inhibits apoptosis and dopamine-induced free radical production in striatal neurons but does not prevent cell death. Brain Res Bull. 2001;56(3–4):331–5.

    Article  CAS  Google Scholar 

  41. Hsieh SS, Chueh TY, Huang CJ, et al. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J Sports Sci. 2021;39(1):10–22.

    Article  PubMed  Google Scholar 

  42. Ai JY, Chen FT, Hsieh SS, et al. The effect of acute high-intensity interval training on executive function: a systematic review. Int J Environ Res Public Health. 2021;18(7):3593.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hashimoto T, Tsukamoto H, Tsukamoto S, et al. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 2018;32(3):1417–27.

    Article  CAS  PubMed  Google Scholar 

  44. Tsukamoto H, Suga T, Takenaka S, et al. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol Behav. 2016;160:26–34.

    Article  CAS  PubMed  Google Scholar 

  45. Damrongthai C, Kuwamizu R, Suwabe K, et al. Benefit of human moderate running boosting mood and executive function coinciding with bilateral prefrontal activation. Sci Rep. 2021;11(1):22657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Byun K, Hyodo K, Suwabe K, et al. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage. 2014;98:336–45.

    Article  PubMed  Google Scholar 

  47. Kemppainen J, Aalto S, Fujimoto T, et al. High intensity exercise decreases global brain glucose uptake in humans. J Physiol. 2005;568(Pt 1):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schiffer T, Schulte S, Sperlich B, et al. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci Lett. 2011;488(3):234–7.

    Article  CAS  PubMed  Google Scholar 

  49. Tsukamoto H, Suga T, Takenaka S, et al. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol Behav. 2016;155:224–30.

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez AL, Whitehurst M, Fico BG, et al. Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals. Exp Biol Med (Maywood). 2018;243(14):1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyne P, Meyrose C, Westover J, et al. Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. J Appl Physiol. (1985). 2019;126(2):431–43.

    Article  CAS  PubMed  Google Scholar 

  52. Hashimoto T, Tsukamoto H, Ando S, et al. Effect of exercise on brain health: the potential role of lactate as a myokine. Metabolites. 2021;11(12):813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci. 2019;39(13):2369–82.

    PubMed  PubMed Central  Google Scholar 

  54. Jacob N, So I, Sharma B, et al. Effects of high-intensity interval training on blood lactate levels and cognition in healthy adults: protocol for systematic review and network meta-analyses. Syst Rev. 2022;11(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Perianez JA, Lubrini G, Garcia-Gutierrez A, et al. Construct validity of the Stroop Color-Word Test: influence of speed of visual search, verbal fluency, working memory, cognitive flexibility, and conflict monitoring. Arch Clin Neuropsychol. 2021;36(1):99–111.

    Article  PubMed  Google Scholar 

  56. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    Article  PubMed  Google Scholar 

  57. Sterne JA, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898

    Article  PubMed  Google Scholar 

  58. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:I4919.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brooks GA, Arevalo JA, Osmond AD, et al. Lactate in contemporary biology: a phoenix risen. J Physiol. 2021;600(5):1229–51.

    Article  PubMed  Google Scholar 

  60. Hargreaves M, Spriet LL. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018;8(8):a029744.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817–28.

    Article  CAS  PubMed  Google Scholar 

  62. Morton AR. Chapter 8. Exercise physiology. In: Taussig LM, Landau LI, editors. Pediatric respiratory medicine. 2nd ed. Philadelphia: Mosby; 2008. p. 89–99.

    Chapter  Google Scholar 

  63. Hyodo K, Dan I, Suwabe K, et al. Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiol Aging. 2012;33(11):2621–32.

    Article  PubMed  Google Scholar 

  64. Yanagisawa H, Dan I, Tsuzuki D, et al. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage. 2010;50(4):1702–10.

    Article  PubMed  Google Scholar 

  65. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang Z, Zhang Y, Zhou R, et al. Lactate as potential mediators for exercise-induced positive effects on neuroplasticity and cerebrovascular plasticity. Front Physiol. 2021;12:656455.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chao D, Foy CG, Farmer D. Exercise adherence among older adults: challenges and strategies. Control Clin Trials. 2000;21(5 Suppl.):212S–S7.

    Article  CAS  PubMed  Google Scholar 

  68. El Ansari W, Lovell G. Barriers to exercise in younger and older non-exercising adult women: a cross sectional study in London, United Kingdom. Int J Environ Res Public Health. 2009;6(4):1443–55.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tinker A, Molloy L, Monks I, et al. The benefits and barriers of exercise for the physical health of older women. J Aging Res Clin Pract. 2017;6:73–9.

    Google Scholar 

  70. Leal G, Bramham C, Duarte C. BDNF and hippocampal synaptic plasticity. Vitam Horm. 2017;104:153–95.

    Article  CAS  PubMed  Google Scholar 

  71. Stillman CM, Cohen J, Lehman ME, et al. Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front Hum Neurosci. 2016;10:626.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xiao J, Wong AW, Willingham MM, et al. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals. 2010;18(3):186–202.

    Article  CAS  PubMed  Google Scholar 

  73. Lundgaard I, Luzhynskaya A, Stockley JH, et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 2013;11(12):e1001743.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fields RD, Bukalo O. Myelin makes memories. Nat Neurosci. 2020;23(4):469–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xin W, Chan JR. Myelin plasticity: sculpting circuits in learning and memory. Nat Rev Neurosci. 2020;21(12):682–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poole DC, Rossiter HB, Brooks GA, et al. The anaerobic threshold: 50+ years of controversy. J Physiol. 2021;599(3):737–67.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou L, Chen SY, Han HJ, et al. Lactate augments intramuscular triglyceride accumulation and mitochondrial biogenesis in rats. J Biol Regul Homeost Agents. 2021;35(1):105–15.

    CAS  PubMed  Google Scholar 

  78. Park J, Kim J, Mikami T. Exercise-induced lactate release mediates mitochondrial biogenesis in the hippocampus of mice via monocarboxylate transporters. Front Physiol. 2021;12:736905.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Glancy B, Kane DA, Kavazis AN, et al. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol. 2021;599(3):863–8.

    Article  CAS  PubMed  Google Scholar 

  80. Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab. 2006;290(6):e1237–44.

    Article  CAS  PubMed  Google Scholar 

  81. Hashimoto T, Hussien R, Cho HS, et al. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS ONE. 2008;3(8):e2915.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Messonnier LA, Emhoff CA, Emhoff JA, et al. Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol. (1985). 2013;114(11):1593–602.

    Article  CAS  PubMed  Google Scholar 

  83. Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 2018;48(8):1809–28.

    Article  PubMed  Google Scholar 

  84. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    Article  CAS  PubMed  Google Scholar 

  85. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  86. Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469–90.

    Article  PubMed  Google Scholar 

  87. Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    Article  PubMed  Google Scholar 

  88. Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43(7):613–25.

    Article  PubMed  Google Scholar 

  89. Stark SM, Kirwan SB, Stark CEL. Mnemonic Similarity Task: a tool for assessing hippocampal integrity. Trends Cogn Sci. 2019;23(11):938–51.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vieweg P, Riemer M, Berron D, et al. Memory image completion: establishing a task to behaviorally assess pattern completion in humans. Hippocampus. 2019;29(4):340–51.

    Article  PubMed  Google Scholar 

  91. Bekinschtein P, Oomen CA, Saksida LM, et al. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin Cell Dev Biol. 2011;22(5):536–42.

    Article  CAS  PubMed  Google Scholar 

  92. Finnegan R, Becker S. Neurogenesis paradoxically decreases both pattern separation and memory interference. Front Syst Neurosci. 2015;9:136.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Becker S. Neurogenesis and pattern separation: time for a divorce. Wiley Interdiscipl Rev Cogn Sci. 2017;8(3):e1427.

    Google Scholar 

Download references

Acknowledgements

The authors thank Jessica Babineau (Information Specialist with Library & Information Services at Toronto Rehabilitation Institute, University Health Network) for the helpful consultations regarding search strategy, screening, data extraction and risk of bias assessments. The authors also thank Dr. Mohammad Alavinia (Biostatistician III at Toronto Rehabilitation Institute, University Health Network) for the helpful consultations regarding the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Green.

Ethics declarations

Funding

This review is funded by the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada Discovery Grant (UT458054) to the senior author. Donor funds were provided by the Walter and Maria Schroeder Family Foundation and by the Brain Changes Initiative.

Conflict of interest

Nithin Jacob, Isis So, Bhanu Sharma, Susan Marzolini, Maria Carmela Tartaglia, Paul Oh and Robin Green have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable as this article does not contain data from any individual person.

Availability of data and material

All data generated or analysed during this review are included in the published paper and supplementary material.

Code availability

Not applicable.

Author contributions

NJ conceived the study, completed all statistical analyses and wrote the first manuscript draft. NJ and IS independently screened titles, abstracts, and full texts, and extracted data. BS reviewed all conflicts during screening, and provided valuable guidance during data extraction and analyses. IS, BS, SM, CT, PO and RG critically edited and revised the draft manuscript, and provided input throughout the review process. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2530 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, N., So, I., Sharma, B. et al. Effects of High-Intensity Interval Training Protocols on Blood Lactate Levels and Cognition in Healthy Adults: Systematic Review and Meta-Regression. Sports Med 53, 977–991 (2023). https://doi.org/10.1007/s40279-023-01815-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01815-2

Navigation