Skip to main content

Advertisement

Log in

Synthesis and Antimicrobial Activities of Boron-Containing Isoniazid Derivatives

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A series of boron-containing imines derived from isoniazid were prepared and characterized by multi-nuclear NMR and FT-IR spectroscopies as well as elemental analysis. An X-ray diffraction study was performed on the bis-pyridyl derivative, revealing that the imine exists as the E-isomer in the solid state. Potential antibacterial properties were studied against five bacteria strains, including the Gram-negative species Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa as well as the Gram-positive Methicillin-resistant Staphylococcus aureus (MRSA). Antifungal testing of all compounds was performed on two yeasts, Candida albicans and Cryptococcus neoformans var. grubii. While poor antifungal and antibacterial activities were observed in most cases, appreciable antibacterial activity against MRSA was observed for several compounds while the thiophene-containing derivative displayed significant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Scheme 1
Fig. 2

Similar content being viewed by others

Data Availability

Available upon request by email from cvogels@mta.ca and is also presented in the online SI section.

References

  1. Řezanka T, Sigler K (2008) Phytochem 69:585–606

    Article  Google Scholar 

  2. Okami Y, Okazaki T, Kitahara T, Umezawa H (1976) J Antibiot 29:1019–1025

    Article  CAS  Google Scholar 

  3. Moreira W, Aziz DB, Dick T (2016). Front Microbiol. https://doi.org/10.3389/fmicb.2016.00199

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dembitsky VM, Quntar AAAA, Srebnik M (2011) Chem Rev 111:209–237

    Article  CAS  PubMed  Google Scholar 

  5. Baker SJ, Ding CZ, Akama T, Zhang Y-K, Hernandez V, Xia Y (2009) Future Med Chem 1:1275–1288

    Article  CAS  PubMed  Google Scholar 

  6. Plescia J, Moitessier N (2020) Eur J Med Chem 195:1–20

    Article  Google Scholar 

  7. Farfán-García ED, Castillo-Mendieta NT, Ciprés-Flores FJ, Padilla-Martínez II, Trujillo-Ferrara JG, Soriano-Ursúa MA (2016) Toxicol Lett 258:115–125

    Article  PubMed  Google Scholar 

  8. Fernandes GFS, Denny WA, Dos Santos JL (2019) Eur J Med Chem 179:791–804

    Article  CAS  PubMed  Google Scholar 

  9. Yang F, Zhu M, Zhang J, Zhou H (2018) Med Chem Commun 9:201–211

    Article  CAS  Google Scholar 

  10. Curran MP, McKeage K (2009) Drugs 69:859–888

    Article  CAS  PubMed  Google Scholar 

  11. Shirley M (2016) Drugs 76:405–411

    Article  CAS  PubMed  Google Scholar 

  12. Markham A (2014) Drugs 74:1555–1558

    Article  CAS  PubMed  Google Scholar 

  13. Zane LT, Chanda S, Jarnagin K, Nelson DB, Spelman L, Stein Gold LF (2016) Immunotherapy 8:853–866

    Article  CAS  PubMed  Google Scholar 

  14. dos Santos Fernandes GF, Salgado HRN, dos Santos JL (2017) Crit Rev Anal Chem 47:298–308

    Article  Google Scholar 

  15. Asif M (2012) Int J Pharm Chem 2:110–120

    CAS  Google Scholar 

  16. Judge V, Narasimhan B, Ahuja M (2012) Med Chem Res 21:3940–3957

    Article  CAS  Google Scholar 

  17. Chohan ZH, Arif M, Shafiq Z, Yaqub M, Supuran CT (2006) J Enzyme Inhib Med Chem 21:95–103

    Article  CAS  PubMed  Google Scholar 

  18. Soni HI, Patel NB (2017) Asian J Pharm Clin Res 10:209–214

    Article  CAS  Google Scholar 

  19. Farad H, Jagdale D (2020) World J Pharm Res 9:1581–1588

    CAS  Google Scholar 

  20. Blaskovich MA, Zuegg J, Elliott AG, Cooper MA (2015) ACS Infect Dis 1:285–287

    Article  CAS  PubMed  Google Scholar 

  21. Bruker AXS (2016) APEX3, V2016.1-0. Bruker AXS Inc, Madison

    Google Scholar 

  22. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  23. Sheldrick GM (2015) Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  24. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  25. Farrugia LJ (2012) J Appl Cryst 45:849–854

    Article  CAS  Google Scholar 

  26. Iglewicz B, Hoaglin DC (1993) How to detect and handle outliers. ASQC Quality Press, Wisconsin

    Google Scholar 

  27. Nöth H, Wrackmeyer B (1978) Nuclear magnetic resonance spectroscopy of boron compounds. Springer, Berlin

    Book  Google Scholar 

  28. Aakeröy CB, Forbes S, Desper J (2012) CrystEngComm 14:2435–2443

    Article  Google Scholar 

  29. Wang Y-T, Tang G-M, Wan W-Z (2006) Acta Cryst E62:4926–4927

    Google Scholar 

  30. Wardell SMSV, de Souza MVN, Wardell JL, Low JN, Glidewell C (2007) Acta Cryst B63:879–895

    Article  Google Scholar 

  31. Qiu X-Y, Fang X-N, Liu W-S, Zhu H-L (2006) Acta Cryst E62:2685–2686

    Google Scholar 

  32. Guo M-J, Sun J-C, Jing Z-L, Yu M, Chen X (2006) Acta Cryst E62:820–821

    Google Scholar 

  33. Drummond AJ, Waigh RD (2000) Recent Res Dev Phytochem 4:143–152

    CAS  Google Scholar 

  34. Sarker SD, Nahar L, Kumarasamy Y (2007) Methods 42:321–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen PC, Madani A, Santucci P, Martin BP, Paudel RR, Delattre S, Herrmann J-L, Spilling CD, Kremer L, Canaan S, Cavalier J-F (2018) Int J Antimicrob Agents 51:651–654

    Article  CAS  PubMed  Google Scholar 

  36. Santucci P, Dedaki C, Athanasoulis A, Gallorini L, Munoz A, Canaan S, Cavalier J-F, Magrioti V (2019) ChemMedChem 14:349–358

    Article  CAS  PubMed  Google Scholar 

  37. Nikaido H (1994) J Biol Chem 269:3905–3908

    Article  CAS  PubMed  Google Scholar 

  38. Briers Y, Lavigne R (2015) Future Microbiol 10:377–390

    Article  CAS  PubMed  Google Scholar 

  39. Cama J, Henney AM, Winterhalter M (2019) J Mol Biol 431:3531–3546

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky VAE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432–2506

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016) Chem Rev 116:422–518

    Article  CAS  PubMed  Google Scholar 

  42. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Chem Soc Rev 37:320–330

    Article  CAS  PubMed  Google Scholar 

  43. Mishra R, Sachan N, Kumar N, Mishra I, Chand P (2018) J Heterocycl Chem 55:2019–2034

    Article  CAS  Google Scholar 

  44. Hamedani NF, Ghazvini M, Sheikholeslami-Farahani F, Bagherian-Jamnani MT (2020) J Heterocycl Chem 57:1588–1598

    Article  CAS  Google Scholar 

  45. Puthran D, Poojary B, Nayak SG, Purushotham N, Bhat M, Hedge H (2020) J Chin Chem Soc 67:1278–1288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jason Masuda and Steve Westcott thank the Natural Sciences and Engineering Research Council of Canada, Saint Mary’s University and Mount Allison University for financial support.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (SAW Grant # RGPIN/04302–2016). The antimicrobial screening performed by The Community for Antimicrobial Drug Discovery (CO-ADD) was funded by the Wellcome Trust (UK) and The University of Queensland (Australia).

Author information

Authors and Affiliations

Authors

Contributions

Chris Vogels and Steve Westcott designed the experiments and wrote the manuscript. Thomas Kostelnik and Morgan Morrissey carried out the synthesis and characterization of the compounds. Jason Masuda performed the X-ray crystallography study of 2g.

Corresponding author

Correspondence to Christopher M. Vogels.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Dedicated to the memory of Dr. Steve Westcott, a great mentor and friend.

Supplementary Information

Below is the link to the electronic supplementary material.

42250_2022_562_MOESM1_ESM.docx

Supplementary file1 Supplementary Information The supplementary crystallographic data for complex 2g (CCDC 2210116) can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Spectroscopic NMR spectra are included in the online supplementary material. (DOCX 2650 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostelnik, T.I., Morrissey, M.K., Vogels, C.M. et al. Synthesis and Antimicrobial Activities of Boron-Containing Isoniazid Derivatives. Chemistry Africa 6, 1209–1216 (2023). https://doi.org/10.1007/s42250-022-00562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00562-7

Keywords

Navigation